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A COMPUTING METHOD FOR SOUND PROPAGATION

THROUGH A NONUNIFORM JET STREAM

Sharon L. Padula and C. H. Liu®

NASA Langley Research Center

Hampton, Virginia
ABSTRACT
Understanding the principles of Jet nolse propagation is an

easential ingredient of systematic noise reduction research. High speed
computer methods offer a unique potential for dealing with complex real
lire physical systems whereas analytical solutions are restricted to
sophisticated idealized models. The classical formulation of sound
propagation through a jet flow was found to be inadequate for computer
solutions and e more suitable approach was needed. Previous investigations
selected the phase and amplitude of the acoustic pressure ag dependent
variables requiring the solution of & system of nonlinear algebraic eguations.
The nonlinearities complicated both the analysis and the computation. A
reformulation of the convective wave equatlon in terms of a new set of
devendent variasbles is developed with e specisl emphasis on its suitability
for numerical sclutions on fast computers. The technique ia very attractive
because the resuifing equations are linear in nonwaving veriables. The
computer solution to such a linear system of algebraic equations may be
obtained by well~defined and direct means which are conservative of computer
time and storage space. Typical examples are illustrated and computational

resgults are compared with avallable numerical and experimentsl data.
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Symbols

Ambient speed of sound
Amplitude

Jet exit diameter, 0.01905
Frequency in Hertz

Flow Mach number; Uﬁ/a

Spherical polar coordinates as in figure 1
Non-dimensional r w.r.t. d; r/a

Time

Longitudinel component of flow velocity

Jet exit velocity

Non-dimensional angular frequency; wd/a

Cartesian coordinate in the windward direction
of the Jet

Complex variable; Aeﬂr:l

Constant in equation 3; a2 <1

Coordinate transformation; tan™*(q™% tan 8)
Coordinate transformation; 1n ]

Quagi velocity potential

Phase; ¥ = ¥, + ‘i’;/}‘ + 0('1\‘“2)

Angular fregquency



INTRODUCTION

This work is an extension of & program at NABA Langley Research Center
concerning the investigation of noise generated by a jJet. It improves upon
previocus work by Schubertl and by Liu and Maestre1102 in which finite
difference equations appropriste to the propagation of sound are solved by
iterative methods for a sinusoidal point source on the axis of the potential
flow region of a subsonic jet. A computer~oriented method is developed
which solves typical sound propagation problems while using a minimum amount

of costly computer resources. The method is teated for cases equivalent
to those presented in reference 1 =0 that comparisons can be made with
numerical as well as experimental results. The present results compare
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favorably with experimental messurements by Grande”, whereas the numerical
compufations in reference 1 overpredict the depth of the downstream "valley"
in Jet noise directivity. More notably, the present method drastically
reduces the requisite computer time, computer storage space and peripheral
usage. Furthermore, the current formulation caﬁ be solved by direct methods
as opposed to the iterstive procedure employed by Schubert. Direct methods
are desirable becauze they are straightforward, they guarantee results and
because suitable computer routines are often available as standard libfary
subroutines.

The method présented here has been thoroughly tested using the idealized
model outlined in reference 1. Imnmediate extension to more realistic models,

e.g.,reference 2, is possible and would presumably net even more reliable

results.



Pormulation of Problem

The Nonuniform Jei Flow Field.- The present method of solution is

tested for the case of an acoustic point source located on the centerline

and contained within the potential core of a spreading jet, figure 1. The

Jet nozzle is cylindrical with diemeter, d. The jet flow is axisymmetric but
nonuniform such that the velocity profiles at any cross-section are determined
from experimental and empirical data. The origin of the coordinate system

is fixed at the source while the coordinate of the flow fleld is fixed at

the virtual origin of the Jet. Most of the calculations are done in the
spherical polar coordinates, (r, 8, ¢).

The Convective Wave Eguation.- Sound propagation through a flow field

can be described most simply by the following convective wave eguation:

L (Fevk 2ot e o

Here & is the smbient speed of sound, U is flow velocity, and Il is Obukhov's
"quasi-potential variable®. The formulation in terms of Il is selected over
the usual pressure Torweiution pince in this way reletively good resulis are
possible without the eddition of corrective terms to the right-hand side of
the equation.

Assuming & harmonic source, Il can be expressed as Il = A exp{:i(?¥ - mt)]
where A & ¥ are the smplitude and phase of the radiated éound waves and ¥
denotes the nondimensional radisl distance with respect to the nozzle
diemeter, d. Substituting Il into equation 1 réaults in e time independent
1

partial differential equation which is nonlinesar in A and ¥. Schubert

chooses to solve this equation by application of the finite difference



method. This necessitates solving a system of simultaneous nonlinesar
algebralc equations.

‘There is no direct method for solving such a system of nonlinear equations.
Iterative computer methods are available but they have a mumber of drawbacks.
First, they are highly specific. The coding is dependent on the problem
to be solved and must be rewritten and retested for each new equation.
Secondly, the accuracy of the results depends upon how well and how quickly
the process converges. In the case of sound propagation through a flow,
it remains to be shown that the process does in fact converge for all
instances,

The problems inherent in iterative methods can be avoided. The variagble
¥ can be represented by the expansion, ¥ = ¥q + Wll? + 0(?_2) so that ¥
approaches ¥y as v approaches infinity. Then Il = 2 exp [i(wo¥ - wt)] .

Thus, Z is & single complex variable and equation 1 can be rewritten
as a linesar partial differential equation in Z. In this way, the solution by
finite difference method involves merely the solution of a system of
simultenecus linear algebralc eéuations. Most computer subroutine libraries

contain routines adequately sulted to this task.

Numerical Bolution

Underlying Assumptions.~- The basic assumptions and basic scheme for
solving the problem follow directly from previous authorsl’a. Figure 2
shows the spreading jet superimposed on a polar grid. An antijet is assumed
in order to avoid problematic boundary conditlons along the rigid walls of
the jet nozzle.

The value of the complex variable, Z, changes most rapidly near the

point source and in the region of significant flow. It is desirable to

apply the finite difference method to an unequally spaced grid which has =a
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concentration of polnts in the areas of greatest change, figure 2. To avoid
the difficulties posed by an uneven grid, an even grid is specified in some
nev coordinates, n and r, figure 3. This new grid in (n,f) maps onto the

"y
desired uneven grid in (r,8) according to the following transformation:
N
lnr

L = tan—l (a—

" (
2)
2 tan ).
For illustration purposes, the polar grid in (n,r) is thought of as a

rectangular grid with n x m intersecting lines.

The Finite Difference Method.- The partial differential equation in 2

should be satisfied at each interlor point of the region of interest. If

thé pertial derivatives in this equation are replaced by thelr central
vifference epproximations, & nine-point difference equation results. Writing
ihis difference equation at each interior grid point gives (n-1) x (m-1)
equations in n X m unknowns. DBoundary conditions are the additional equations
needed to specify a unique sclution.

Boundary Conditions.- The equation in 2 is an elliptic type partial

differential equation, thus,the boundary value problem is well-posed.

The reglun, D, is wounded by two concentrlc half circles centered on
the point source and by two line segments on the axis of symmetry, figure L.
The inner circle hes a radius of % d and the outer circle has a radius of
100 d, vwhere 4 is_the diameter of the Jet nozzle. In this wey, the inner
boundary is contained in the potential core of the jet, and the outer boundary
approximates the far field.

The inner boundaery conditions come from & solution derived by Moretti

and Slutakyha The solution is specified for a point source in a uniform
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flow. It gives the sound pressure level for pointa a small distance from
the source. Since the acoustic source and,the inner boundary are contained
in the potential core of the jJet, they are in a locally uniform flow and
the Moretti and Slutsky solution is epproximately valid.
The outer boundary conditions at the far field are essentially the
same as the Sommerfeld radiation conditions. Along the centerline, three-point

symmetry conditions are used.

Results and Discussion

Figures 5-7, show sample results at a variety of flow veloclties,
acoustic source frequencies and radial distances from the source. In each
graph, sound pressure level relastive to SPL at 6 = 90D is plotted sgeinst
6. These figures facilitate comparisons between the experimental data of
reference 3 and the numerical results of this paper and reference 1.

Figure 5 shows comparable resulte for the flow velocities Mach 0.3,
Mach 0.5, snd Mach 0.9. Here radial distance from the source and source
frequency remein constant at 100 diameters and 3000 Hertz, respectively.
Notice that the correspondence between experimental resulte and the current
numerical :esults is esvecially goou at the lower Mach numbers. Also notice
the discrepancies between the numerical results of reference 1 and experimental
results at these same Mach numﬁers.

Figure 6 showé graphs, simllar to those ebove, where radial distance
and flow velocity are constant (r = 100 @ and M = 0.3) while frequency changes
from 3000 Hz to 5000 Hz to TOOO Hz. In all cases, numerical results obtained
by the present method are supericr to those obtained in reference 1 with
respect to their agreement with experiment.

Figure T illustrates the differences between the current method and

t
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the previous one. Sound pressure levels for Mach 0.7 and fregquency 3000 Hz
arce plotted at a variety of radial distances from the source. It is clear
that the differences between the graphs increase with the radial distance.
Even greater discrepancies are evident when phase is plotted against 8 as in
tigure 8. Again, resulte for Mach 0.7 and frequency 3000 Hz are plotted at
a varlety of rueciul distences from the source. In this case, the graphs
from reference 1 are merkedly different from those produced by the present
method.

It should be emphasized that the present method and the method of
reference 1 use the seme sound propagation model for testing purposes.
Theoretically, they should produce ldenticel results. Differences arise
when theory is transiated into practical computer programs. Iterative
methods, such as the one described in reference 1, are often inaccurate
becuuse the iterative process must be terminsted after a reasonable amount of
computer time has «lupsed. Purthermore, an iterative method is more
susceptible to round-off errors which tend to multiply as computing time
iner. ases. Direc' wethods, such as the method presented here, largely avoid
these problems and generally prodﬁce more rellable results. This expleing why
graphs of the direci method's results match graphs of experimental data B0
closely.

The present method has other advantages besides accuracy. It is guite
straightforward and relatively easy to program. A typical program will
execute in well under 1 minute of central memory time in a CDC 6600
computer. The computer siorage space requirements are reasonable so that
transfer of date to and from periphersl storage devices is unnecessary.

None of these things can e said about the method of reference 1. Far from

guaranteeing results in under 1 minute, the iterative method can not
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guarantee convergence to a solution for the general case. Furthermore, the
aigorithm for solving a system of nonlinear equations is quite complex and

requires large amounts of storage space.

Conclusion
It has been shown that the present method for .sound propagation
problems has distinct adventages over previous methods. It is a direct
rather than iterative method and, consequently, it is faster, more accurate,
and less complicated. The method is conservative of computer resources,
relatively easy to program, and makes use of standard library subroutines.
Since the method itself is relatively simple, increasingly complex and

realistic models can be tested.
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Figure 5. Sound pressure level at 100 d from the source
| for several Mach numbers.. Source at 2 d.
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Figure 6. Sound pressure level at 100 d from the source
for several frequencies. Source at 2d.
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Figure 7. Sound pfessure level at various distances from the source.
M=0.7 , W={.055 (3000 Hz for a 0.75" jet ), source at 2 d.
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Figure 8. Phase &t various distances from the source.
M=0.7 , W=1.055 (3C00 Hz for a 0.75" jet) , source at 2d.



